Post-assembly Modification of Bordetella bronchiseptica O Polysaccharide by a Novel Periplasmic Enzyme Encoded by wbmE*S⃞
نویسندگان
چکیده
Bordetella bronchiseptica is a pathogen of humans and animals that colonizes the respiratory tract. It produces a lipopolysaccharide O antigen that contains a homopolymer of 2,3-dideoxy-2,3-diacetamido-L-galacturonic acid (L-GalNAc3NAcA). Some of these sugars are found in the uronamide form (L-GalNAc3NAcAN), and there is no discernible pattern in the distribution of amides along the chain. A B. bronchiseptica wbmE mutant expresses an O polysaccharide unusually rich in uronamides. The WbmE protein localizes to the periplasm and catalyzes the deamidation of uronamide-rich O chains in lipopolysaccharide purified from the mutant, to attain a wild-type uronamide/uronic acid ratio. WbmE is a member of the papain-like transglutaminase superfamily, and this categorization is consistent with a deamidase role. The periplasmic location of WbmE and its acceptance of complete lipopolysaccharide as substrate indicate that it operates at a late stage in lipopolysaccharide biosynthesis, after polymerization and export of the O chain from the cytoplasm. This is the first report of such a modification of O antigen after assembly. The expression of wbmE is controlled by the Bordetella virulence gene two-component regulatory system, BvgAS, suggesting that this deamidation is a novel mechanism by which these bacteria modify their cell surface charge in response to environmental stimuli.
منابع مشابه
Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae.
Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence i...
متن کاملInteractions of pulmonary collectins with Bordetella bronchiseptica and Bordetella pertussis lipopolysaccharide elucidate the structural basis of their antimicrobial activities.
Surfactant proteins A (SP-A) and D (SP-D) play an important role in the innate immune defenses of the respiratory tract. SP-A binds to the lipid A region of lipopolysaccharide (LPS), and SP-D binds to the core oligosaccharide region. Both proteins induce aggregation, act as opsonins for neutrophils and macrophages, and have direct antimicrobial activity. Bordetella pertussis LPS has a branched ...
متن کاملProduction of recombinant Bordetella pertussis serotype 2 fimbriae in Bordetella parapertussis and Bordetella bronchiseptica: utility of Escherichia coli gene expression signals.
Serotype-specific fimbriae of Bordetella pertussis are considered potential components of new-generation vaccines against whooping cough. Attempts to characterize fimbriae, and indeed other virulence determinants, produced by B. pertussis have been frustrated on one hand by low yields from B. pertussis itself and on the other by an inability to produce native recombinant products in Escherichia...
متن کاملRole of a putative polysaccharide locus in Bordetella biofilm development.
Bordetellae are gram-negative bacteria that colonize the respiratory tracts of animals and humans. We and others have recently shown that these bacteria are capable of living as sessile communities known as biofilms on a number of abiotic surfaces. During the biofilm mode of existence, bacteria produce one or more extracellular polymeric substances that function, in part, to hold the cells toge...
متن کاملMolecular Evolution of the Two-Component System BvgAS Involved in Virulence Regulation in Bordetella
The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence fac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Biological Chemistry
دوره 284 شماره
صفحات -
تاریخ انتشار 2009